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Short communication 

MICA: A toolkit for multimodal image coupling analysis 
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A B S T R A C T   

Background: Analytical methods of brain research involving across-voxel correlation between multimodal images 
are currently tedious and slow due to the amount of manual interaction required. We have developed a new 
software package to automate and simplify many of these tasks. 
New method and results: Our software performs four primary functions to aid in research. First, it helps with 
consistent renaming of files preprocessed with other software, enabling more accurate analysis. Second, it au
tomates ROI extraction using data from existing and custom brain atlases. Third, it performs coupling analysis to 
obtain across-voxel Pearson correlation coefficients between images of different modalities based on these brain 
atlases or custom ROIs. Fourth, it automatically performs multiple comparison correction to correct the P-value 
using two false discovery rate (FDR) methods and a Bonferroni method to reduce the false-positive rate. 
Comparison with existing methods: Previous researchers have investigated the couplings between blood supply and 
brain functional topology in healthy brains and those from patients with type 2 diabetes, chronic migraine, and 
schizophrenia. These studies conducted analyses of both the whole and parts of the brain in terms of neuronal 
activity and blood perfusion, but the procedures were laborious and time-consuming. 
Conclusion: We have developed a convenient and time-saving software package using MATLAB 2014a to auto
mate the data preparation and analysis of across-voxel coupling between multimodal images.   

1. Introduction 

The noninvasiveness and high resolution of magnetic resonance 
imaging (MRI) means that MRI has become one of the most important 
methods to study brain function and disease. Previous studies have used 
multimodal imaging methods such as blood oxygen level dependent 
(BOLD) imaging (Biswal et al., 1995) and arterial spin labeling (ASL) 
imaging (Hendrikse et al., 2012) to explore brain changes caused by 
various diseases. However, researchers found that single-mode imaging 
techniques do not always comprehensively reflect specific functional 
states of the brain, as with the neurovascular coupling state involving 
both neuronal activity and cerebral blood perfusion (Attwell et al., 
2010). 

Liang et al. explored the relationship between functional network 
strength (FCS) and cerebral blood flow (CBF) in depth, and they found a 
tight coupling between the blood supply and brain functional topology, 

both during rest and in response to task demands (Liang et al., 2013). 
Zhu et al. found the CBF-FCS coupling in schizophrenia patients was 
lower than in healthy control subjects (Zhu et al., 2017). A previous 
study also investigated the relationship between positron emission to
mography (PET) and MRI scans and showed that they reflected regional 
variations in the correspondence between glucose metabolism and 
measures of functional activity (Shokri-Kojori et al., 2019). In our pre
vious studies, we found reduced neurovascular coupling in the limbic 
system and the default mode network in diabetic patients (Hu et al., 
2019a), even though these patients did not experience cognitive 
impairment (Yu et al., 2019).We also found an abnormal neurovascular 
coupling state in the angular gyrus and the superior marginal gyrus in 
migraine patients (Hu et al., 2019b). These studies all investigated the 
across-voxel coupling between multimodal images and indicated the 
potential significance of this method for exploring the pathogenesis of 
brain disease. 

Abbreviations: ALFF, Amplitude of low frequency fluctuation; ASL, arterial spin labeling; BOLD, blood oxygen level dependent; CBF, Cerebral blood flow; DTI, 
diffusion tensor imaging; FCS, Functional connectivity strength; ROI, Region of interest. 
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However, the studies have all required a manual, labor-intensive 
procedure to obtain their results. A simple and useful analytical pro
cess is still needed to investigate relationships between images from 
different sources, especially for beginners. The ImCalc toolbox in the 
Statistical Parametric Mapping (SPM) 12 package (http://www.fil.ion. 
ucl.ac.uk/spm) can calculate the across-voxel correlation between two 
images, but it is very time-consuming and laborious to calculate the 
correlation coefficients one by one. For example, 100 subjects with 10 or 
more regions of interest (ROIs) requires at least 1000 mouse clicks and 
between 3 and 5 min for each one. A convenient and user-friendly 
automated software process is urgently needed to reduce potential 
mistakes introduced by manual selection. 

Therefore, we present a pipeline using MATLAB 2014a (The Math
Works Inc., Natick, MA, US) to analyze the across-voxel coupling be
tween multimodal images. Users can use either the ready-made 
Anatomical Automatic Labeling (AAL) atlas or the Harvard-Oxford atlas 
for analysis, or they can use custom ROIs from other atlases with the ROI 
extraction function in this software. Our software also provides multiple 
comparison correction methods to decrease the false positive rate. 

2. Methods 

The method for determining the coupling between multimodal im
ages is to calculate the across-voxel Pearson correlation coefficients 
between the images. For example, for a given subject’s brain, we process 
two images from different methods using a specific ROI mask and 
concatenate all voxel values from the extracted images into two large 
modality-specific vectors. We then correlate these two vectors to form a 
single value for this subject. Finally, we compare several groups of 
subjects statistically. 

In our previous study, we calculated Pearson correlation coefficients 
of BOLD-based neural activity parametric maps and ASL-based CBF 
maps and conducted an inter-group comparison between healthy con
trols and patients with chronic migraines (Hu et al., 2019b). We found a 
general correlation between neural activity and blood flow perfusion at 
the whole brain level (Fig. A.1). In addition, we found this correlation 
state was abnormal in migraine patients compared to healthy controls 
by using a 2-sample t-test. 

3. Implementation 

We developed our MICA package in MATLAB 2014a and released it 
as an open-source package (https://github.com/hubolll/MICA_v1; or 
request to Dr. Bo Hu at rayhb@foxmail.com, or Prof. Wen Wang at 
wangwen@fmmu.edu.cn). The package also includes an example data
set and a user tutorial. The package uses SPM to read raw images, so 
users should install the SPM 12 toolbox (http://www.fil.ion.ucl.ac. 
uk/spm) in MATLAB before using MICA. 

4. Data preparation 

Our package does not provide preprocess data, so users need to 
preprocess the data in advance (e.g., by using DPABI) to correct head 
movements, standardize the data, and remove nuisance signals (Yan 
et al., 2016). The software only supports files in the common NIfTI 
format; other formats must be converted to this format before analysis. 
All of the images must have the same dimensions (e.g., 61 × 73 × 61 
voxels or 91 × 109 × 91 voxels). In addition, irregular naming of the 
data may lead to an inconsistent file order, which may lead to incorrect 
matching (e.g., the image of subject A may be mistakenly matched with 
the image of subject B) during the calculations. Therefore, the software 
has a strict requirement for file naming: the names of the images for the 
same subject must match exactly. For example, to investigate the cor
relation between functional and structural images, the names of both 
images should be “Subject_001.nii”. 

5. Functions of the software 

The interface of the software is shown in Fig. 1. 

5.1. Removing the prefix from file name 

Some data preprocessing software like DPABI automatically adds 
prefixes in an attempt to help the operator identify the data pre
processing steps. For example, the prefix “arwscf” means slice timing, 
realign, normalization, smooth, covariates regression, and band-pass 
filtering were successively applied on the raw data (Yan et al., 2016). 
To meet the file naming requirements of our MICA as described in the 
previous section, it is necessary to delete the prefixes of file names in 
batches. Our package leads users to select the data path and provide the 
number of characters to remove from the beginning of the file names. As 
shown in Fig. A.2, the ALFF images produced by DPABI require the 
removal of 10 characters to restore the original name of the data. 
Therefore, users put “10′′ in the “number” field. Running the process 
copies the user’s original data to a new folder with the prefixes removed. 

5.2. Extracting ROIs from atlas 

The software provides two sets of default ROIs: 116 brain regions 
based on the AAL atlas (AAL-116) and 112 brain regions based on the 
Harvard-Oxford atlas (HO-112). However, different brain atlases may 
reflect different aspects of brain function, so researchers may need brain 
regions using other atlases in their own research. The software performs 
automatic ROI extraction, segmenting the target brain atlas into single 
brain areas (Fig. A.3). For example, automated segmentation would use 
the AAL atlas to segment a single image into 116 files corresponding to 
116 regions (Tzourio-Mazoyer et al., 2002). Alternatively, users can also 
use custom ROIs via a custom atlas. 

5.3. Across-voxel coupling analysis 

Coupling analysis is the core function of the software. Users select 
folders containing data in NIfTI format and then choose the brain atlas to 
use for analysis. As noted previously, we include two brain atlases, AAL- 
116 and HO-112. The provided atlases use an image size of 61 × 73 × 61 
voxels, so using the provided atlases requires all input images to be 
preprocessed to match. In addition, users can also add a series of custom 
ROIs (such as brain networks) themselves. The pre-defined ROIs restrict 
the analysis volume, with the brain images dot multiplied with the 
specific ROI to form the ROI-wise images. The package then calculates 
the across-voxel correlation coefficient between two ROI-wise images. 
Because the order of the results depends on the naming order of the 
custom ROIs, we suggest that the user number the custom ROIs in 
advance so that the results can be identified more efficiently. Finally, the 
user selects the output directory and output file name. The package 
writes the output results into a Microsoft Excel file containing an M ×N 
matrix. Each row of the matrix represents a subject, while each column 
corresponds to an ROI, with the cell value representing the across-voxel 
correlation coefficient between the subject and ROI. Finally, for statis
tical comparison, the subjects of different groups should be analyzed 
separately. 

5.4. Multiple comparison correction of results 

It is common for multiple regions to be selected in step 2, which 
introduces the problem of multiple comparison. Our software provides 
three methods for multiple comparison correction: (i) the false discovery 
rate (FDR) method introduced by Storey (Storey, 2002); (ii) the FDR 
method introduced by Benjamin and Hochberg (the BH method) (Ben
jamini, 1995); and (iii) the Bonferroni method. Users input the result file 
names into the group 1 and group 2 boxes and then specify the statistical 
threshold (0.05 by default). After running the process, the corrected 
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results will be saved to the output folder. The result is a MATLAB file 
containing three variables: FDR1 representing the p-value corrected by 
the Storey method, FDR2 representing the value calculated by the BH 
method (Benjamini, 1995), and Bonferroni representing the value 
calculated according to the Bonferroni method. 

6. Results 

In a recent unpublished study, we compared the across-voxel neu
rovascular coupling before and after smartphone use (SPU). Twenty-one 

subjects recruited from the undergraduate cohort of our university un
derwent multimodal MRI scans (including BOLD, ASL, and T1WI scan
ning) on their first visit. After that, they were assigned to use a specific 
function module of their smartphone for 1.5 h. When this task was 
finished, the scans were repeated. 

Amplitude of low frequency fluctuation (ALFF) (Zang et al., 2007) 
derived from the BOLD signal was used to represent neuronal activity, 
and cerebral blood flow (CBF) (Hendrikse et al., 2012) derived from the 
ASL signal was used to represent cerebral perfusion. Correlation co
efficients between neuronal activity and perfusion maps were calculated 

Fig. 1. The MICA user interface, which is divided into four parts to match the four broad tasks of the software (preprocessing, ROI extraction, neurovascular 
comparison, correction analysis). 
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on each brain region in the automated AAL atlas (Liang et al., 2013). We 
used a paired t-test to compare them before and after SPU. We used the 
Bonferroni method for multiple comparison corrections (p < 0.05). After 
obtaining all of the results and performing multiple comparison 
correction, we used Sigmaplot (Systat Software, Inc, Point Richmond, 
CA) and BrainNet Viewer (Xia et al., 2013) to draw line graphs and brain 
graphs to illustrate the findings comprehensively (Fig. 2). 

According to Fig. 2a, after the 1.5 -h SPU, ALFF-CBF couplings 
decreased in 4 of the ROIs that following the Bonferroni correction, 
including the left calcarine, the bilateral cuneus, and the right middle 
temporal gyrus (Nos. 43, 44, 45, and 86 in the AAL atlas). To visualize 
the results more directly, we projected the difference between the mean 
values before and after smartphone usage on the brain map (Fig. 2b). We 
then visualize the couplings between cerebral activity and blood 
perfusion affecting areas related to reading, visual information pro
cessing, and facial recognition. 

7. Discussion 

In this study, we have presented a new software page for analyzing 
the across-voxel correlation between brain images of different modal
ities. The software includes four main functions. First, it includes a data 
renaming function to remove the prefixes of file name generated by 
preprocessing software to facilitate data preparation. Second, it per
forms ROI extraction to divide brain images into individual ROIs using 
existing brain atlases or custom ROI maps. Third, it performs coupling 
analysis to produce across-voxel correlation coefficients between images 
of different modalities. Finally, it addresses the multiple comparison 
problem by correcting the P-value using two FDR methods and a Bon
ferroni method to reduce the false-positive rate. This software greatly 
simplifies the data processing for researchers studying the coupling 
relationship between multimodal images while providing great freedom 
in selecting ROIs. 

Previous studies have explored the specific mechanisms of brain 
function and pathogenesis of brain diseases by combining images of 
different modalities, such as the identification of brain hubs (Liang et al., 
2013) and the relationship between gray matter volume and metabolism 
(Hagmann et al., 2008). Two previous researches focused on the rela
tionship between ASL imaging and resting state BOLD imaging to 
explore the degree of cerebral neurovascular coupling in type 2 diabetics 
(Hu et al., 2019a; Yu et al., 2019). Shokri-Kojori et al. studied the 
relationship between FCS using resting state BOLD images and cerebral 

metabolism using PET images and found the different rates of energy 
using among various brain networks as well as the changes in disease 
state (Shokri-Kojori et al., 2019). Many issues remain to be investigated, 
such as the relationship between long-term chronic hypoperfusion and 
brain structure remodeling, the relationship between task state brain 
function and brain structure remodeling (to explore the influence of 
daily cognitive training on brain structure), and the relationship be
tween cerebral micro hemorrhage and cerebral functional hubs. 

In addition, brain functional hyper-connectivity receives significant 
attention, exploring the correlation of BOLD signals in the same brain 
area from different subjects. Finn et al. explored the brain functional 
hyper-connectivity of subjects who were listening to an ambiguous story 
(Finn et al., 2018). They found an increased synchronization in the 
medial prefrontal lobe and amygdala in subjects with a high degree of 
paranoia. Consequently, researchers can also use this software to study 
across-voxel functional hyper-connectivity. 

8. Conclusion 

We have developed our convenient and time-saving software pack
age to advance brain research. It is useful for data preparation and 
analysis of across-voxel coupling between multimodal brain images. It is 
our hope that this will enable greater use of automated data analysis in 
brain studies. 
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Fig. 2. The visualization of results. (a) Line graph of our unpublished smartphone use research. The blue and red lines indicate the mean correlation coefficients 
across all subjects. The shadows represent the standard deviations. The black line indicates the original P-value between two groups, and the green line is the 
threshold of statistical significance after Bonferroni correction. (b) Visual representation of the results. We pseudo-colored brain regions with significant inter-group 
differences using the intergroup difference value. Colors correlate with the signal in that brain region after subtracting the mean correlation coefficient between the 
two groups and projecting the difference between the mean value before and after smartphone use on the brain map. 
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